
N94- 36496

INTEGRATING END-TO-END THREADS OF CO'N_ROL INTO

OBJECT-ORIENTED ANALYSIS AND DESIGN

Janet E. McCandlish

TRW

213 Wyrm Drive

Huntsville, Ala 35805

Dr. James R. MacDonald

ALPHATECH, Inc.
50 Mall Road

Boston, Mass 01803

Dr. Sara J. Graves

University of Alabama
in Huntsville

Alumni House, Room 102

Huntsville, Ala 35899

s/ -c /

]

!
|
!
!

!

=

ABSTRACT

Current object-oriented analysis and design methodologies fall short in their use of

mechanisms for identifying threads of control for the system being developed. The

scenarios which typically describe a system are more global than looking at the individual

objects and representing their behavior. Unlike conventional methodologies that use data

flow and process-dependency diagrams, object-oriented methodologies do not provide a

model for representing these global threads end-to-end.

Tracing through threads of control is key to ensuring that a system is complete and

timing constraints are addressed. The existence of multiple threads of control in a system

necessitates a partitioning of the system into processes. This paper describes the

application and representation of end-to-end threads of control to the object-oriented

analysis and design process using object-oriented constructs. The issue of representation

is viewed as a grouping problem, that is, how to group classes/objects at a higher level of

abstraction so that the system may be viewed as a whole with both classes/objects and

their associated dynamic behavior. Existing object-oriented development methodology

techniques are extended by adding design-level constructs termed logical composite

classes and process composite classes. Logical composite classes are design-level classes

which group classes/objects both logically and by thread of control information. Process

composite classes further refine the logical composite class groupings by using process

partitioning criteria to produce optimum concurrent execution results. The goal of these

design-level constructs is to ultimately provide the basis for a mechanism that can support

the creation of process composite classes in an automated way. Using an automated

mechanism makes it easier to partition a system into concurrently executing elements that

can be run in parallel on multiple processors.

INTRODUCTION

The philosophy upon which object-oriented analysis and design is based does not lend

itself well to the representation of how a system operates as a whole. The object-oriented

premise emphasizes the extraction of objects to be modeled from the problem domain in

contrast to traditional methods which rely on the functionality of the system. A review of
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some of the more current object-oriented analysis and design methodologies highlights this

shortcoming by these methodologies' inability to effectively represent the end-to-end

processing of a system. A global representation is key to understanding how the system

operates. As described in [Fichman], conventional methodologies use tools such as data

flow and process-dependency diagrams for representing global threads end-to-end, but

object-oriented methodologies have nothing comparable. Because conventional methods

stress functionality over object partitioning, showing the operation of the overall system
via functions is consistent with the methodology approach in general. In contrast, object-

orientation concentrates on objects as stand-alone reusable components instead of how

those components tie together. Object-oriented methodologies partition objects and their

relationships into several models which represent different views of the objects and their

interactions. These views are generally presented in the form of static architectures and

dynamic behavior. There are typically multiple instances of each view, with each instance

representing a fragment of the system. The observer must deal not only with these

multiple views of the system, but also with fragments of the system at a time. Much effort

is required to obtain a synergistic understanding of the system being modeled as a whole.

One of the key mechanisms for ensuring system completeness is to trace through

threads of control. A thread of control is a path through a sequence of operations

representing a particular scenario in the system being modeled. Threads of control

integrate the overall flow of data, control, events, and timing up to the system level. They

provide a means by which the system may be analyzed and understood as a whole. Thread
of control information is desirable in two ways: first, it ensures that all of the pertinent

objects exist to support the system as a whole; and secondly, if timing is critical in the

system, tracing through the threads of control may identify essential timing constraints and

potential bottlenecks. The presence of multiple threads of control is an indicator that the

system will need to be partitioned into processes, that is, separate executable entities.

Identification of these critical areas early on will drive decisions concerning process

allocation, and how data will be transferred, accessed, and shared. Because of their

significance, successfully representing threads of control for a system being modeled

greatly enhances understanding the operation of the system as a whole.

Viewing a system in terms of the processes which make it up adds additional

complications. On the one hand, large-scale real-time distributed systems reconcile

competing demands for resources by partitioning the system into multiple processes. On

the other hand, object-oriented technology strives to partition a system by objects where

all data and operations associated with an object are encapsulated within the object. The

partitionings for processes and objects appear to be orthogonal in this context when
threads of control are considered. Hence, the partitioning goals associated with object-

oriented and distributed systems are conflicting.

This paper introduces a means of representing threads of control and their associated

classes/objects to better illustrate how the system operates. Towards this end, an analysis

of five predominant object-oriented analysis and design methodologies was performed.
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The methodologies reviewed include Coad and Yourdon [Coad91a] [Coad91b], Shlaer

and Mellor [Shlaer88] [Shlaer91], Booch [Booch], Firesmith [Firesmith], and Rumbaugh

[Rumbaugh]. While some of the methodologies reviewed describe both analysis and

design (Coad and Yourdon, Firesmith and Rumbaugh), Shlaer and Mellor focus more on

analysis and Booch on design. The distinction between object-oriented analysis and

design is not precise. There are inconsistencies in the research about what comprises
each, and the lines between analysis and design in object-orientation are blurred [Berard],

[Korson]. It is not the goal of this paper to distinguish between object-oriented analysis

and design. Instead, the intent is to focus on the constructs necessary to support end-to-

end processing during object-oriented analysis and design as opposed to object-oriented

programming.

A review of methodologies indicates that both static (class/object architecture) and

dynamic (control and data flow) representations of systems exist; however, threads of

control are only minimally represented and are fragmented. This paper extends the static

and dynamic concepts by introducing a representation which overlays dynamic flow (via

thread of control information) onto a static structure. In order to combine dynamic and

static representations to show end-to-end processing, class/objects are grouped so that

they may be represented at a higher level of abstraction. Determining how the

class/objects were to be grouped resulted in a partitioning problem. To simplify the

partitioning problem, the proposed grouping approach is performed in two phases. The

fLrSt phase involves a logical grouping of class/objects. The logical groupings are further
refined with thread of control (state, control, and data flow) information, providing a

coarse-grained partitioning referred to as logical composite classes. The second phase

further extends the partitioning using process partitioning criteria based on other thread of

control information involving communication and timing constraints to develop process

composite classes. The introduction of these design-level constructs provides the basis for
a mechanism to automate different instances of composite process classes for timing and

concurrency comparisons.

ANALYSIS OF CURRENT OBJECT-ORIENTED ANALYSIS AND DESIGN

METHODOLOGIES

Each of the five methodologies reviewed provided some means of representing both

the static architecture and dynamic behavior of a system. The following is a brief

description of the techniques each methodology employs for representing static and

dynamic views of a system and an overall assessment of these techniques.

Static Architecture

The static architecture refers to a non-temporal representation of the system. A static

representation of the system is generally reflected by some variation of entity-relationship

diagram. Entities, in this context, are either classes or objects. The distinction between

classes and objects is that a class serves as a template for defining the characteristics of an

object. An object is a software abstraction that models a concept, abstraction, or thing
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which represents the application domain (analysis) or the solution space (design). To

further distinguish the two, an object is an instance of a class. Further, a concrete class is

a class for which object instances may be created, as opposed to an abstract class for

which objects may not exist.

The static models and diagrams associated with the methodologies reviewed are

summarized in Figure 1. The diagrams for each methodology which depict classes/objects

and their relationships are those listed first in the Class/Object Representation row of

Figure 1. These diagrams, when used in a general context, will be termed class/object

diagrams since they generally contain more information than what is usually associated

with an entity-relationship diagram as is described below.

Class/ •

Object

Model(s) .

Class/

Object •
Represent-

ation(s)

Coad and

Yourdon

Class-&-Object
Layer
Structure Layer
Attribute Layer
Service Layer

Class-&-Object
Diagram
Gen-Spec
Structure
Whole-Part
Structure

Shlaer and

Mellor

• Information
Model

• Information
Structure
Diagram

• Inheritance

Diagram

Booch

• Class
Structure

• Object
Structure

• Class
Diagram

• Object
Diagram

• Class

Template

Firesmith

• Class Model

• Object Model

• General
Semantic Net

• Interaction

Diagram
• Classification

Diagram
• Composition

Diagram
• Class

Specificat!0n

Rumbaugh

• Object Model

• Object
Diagram

• Generalization
Notation

• Aggregation
Notation

The above representations all include classes/objects, relationships, and attributes. All
include operation specifications with the exception of Shlaer and Mellor.

Figure 1. Static Models and Diagrams

An object, or the class template for the object, is usually def'med in terms of its

attributes and operations. Attributes are fields which describe data values within a

class/object, and operations are functions performed by a class/object Two

methodologies, Coad and Yourdon and Firesmith, represent attributes and operation

specifications on their Class-&-Object Diagram and Object Diagram respectively. Shlaer

and Mellor include only attributes on their Information Structure Diagram. Both Booch

and Firesmith use a separate means for representing attributes and operation

specifications. Booch describes a Class Template, and Firesmith a Class Specification.

Relationships in a class/object diagram refer to associations between two or more

classes/objects indicating some type of structural or semantic link. In addition to simple

4
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association, two special types of relationships exist in most object-oriented methodologies:

is-a and has-a relationships.

Is-a relationships introduce the concepts of generalization, specialization, and

inheritance. A generalization is a higher level of abstraction of a class. For example, the

class animal is a generalization of the classes cat and dog. Because it is a generalization,

animal is a superclass of cat and dog. Animal might be described as furry and four-

legged. While both the cat and dog are furry and four-legged, the cat meows and the dog

barks. Because they are specializations of animal, cat and dog are subclasses of animal;

they inherit the characteristics of being furry and four-legged, but they extend the animal

class by adding special characteristics such as meowing or barking. Specifically, a

subclass inherits the attributes and operations of its superclass, and extends it further with

additional attributes or operations. Several of the methodologies contained special

diagrams to represent the is-a relationship: Coad and Yourdon/Gen-Spec Structure,

Shlaer and Mellor/Inheritance Diagram, Firesmith/Classification Diagram, and

Rumbaugh/Generalization Notation.

Has-a relationships depict an aggregation of class/objects. A class/object which

contains at least one other class/object is referred to in this paper as a composite

class�object. For example, the composite class/object car is made up of doors, wheels, an

engine, etc. Conversely, a class/object which does not contain other classes/objects is

termed an atomic class/object. Several methodologies represented aggregation

associations with special notation: Coad and Yourdon/Whole-Part Structure,

Firesmith/Composition Diagrams, and Rumbaugh/Aggregation Notation.

Dynamic Behavior

Dynamic behavior is behavior attributable to timing and the flow of information in the

system being modeled. The information typically represented in dynamic models includes

state, control and data flow, and timing information. The states, or modes, of a

class/object reflect the attribute values of a class/object at a given point in time. State

information contains the states of a specific class/object, and the operations or events that

effect transitions between the class/object's states. State transition diagrams (STDs) are

the most common representation of state information. STDs are generated for each

class/object which has interesting behavior. All of the STDs in the methodologies

reviewed contained states, events, transitions and operations with the exception of Coad

and Yourdon's Object State Diagram which contained only states and transitions. Control

flow information describes the control and sequencing of a message within or between

classes/objects. It is most often represented in a control flow diagram (CFD). A message

may be a request for service, event, or passing of data. Dataflow information describes

the flow of data among classes/objects via their operations. A data flow diagram (DFD) is

commonly used to show data flow among the class/objects. Timing information contains

the duration of operations within and between class/objects and is usually associated with

control flow information.
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Control flow information is only minimally represented on the Coad and Yourdon

Class-&-Object diagram via arrows between the class/objects which represent message
connections. Booch shows control flow only in the context of a Timing Diagram which

displays objects and the invocations of their operations along a time axis. Rumbaugh's

primary mechanism for control flow is his State Diagram; although control may also be
shown on a DFD but is considered redundant. Both Shlaer and Mellor and Firesmith

combine control and data flow information onto one diagram, the Action DFD and

Object-Oriented CFD respectively. Neither Coad and Yourdon or Booch describe

representations for data flow. For timing information, only Booch (as previously
mentioned) and Firesmith provide a timing diagram. Coad and Yourdon allow that a time

requirement may be annotated with the specification of a particular class/object. Shlaer

and Menor describe time only in the context of threads of control which is addressed later

in this paper.

The dynamic models and diagrams associated with the methodologies reviewed are

summarized in Figure 2. The first bullet in each cell lists the model used to address each

type of dynamic information, and the second bullet lists the diagram (or diagrams) the

methodologies use to represent information.

State
Information

Control Flow
Information

Data Flow
Information

Timing
Information

Coad and Shlaer and Booch

Yourdon Mellor
• Services Layer • State Model • Class
• Object Stats • STD Structure
Diagram • STD

• Services Layer • Process* • Object
• Message Conn-i Model Structure
ections on • Action DFD • Timing
Class-&-Object Diagram
Diagram
• N/A • NIA

• Services Layer
• Timing Textual
Annotation in
Class-&-Object
Specification

• Process*
Model

• Action DFD

-N/A • Object
Structure

• Timing
Diagram

Firesmith Rumbaugh

• State Model • Dynamic
• STD Model

• State Diaqram
• Control • DynamicJFunc-

Model tional Models
• Object- • State Diagram/
Oriented CFD DFD

• Control
Model

• Object-
Oriented CFD

• Timing Model
• Timing

Diagram

• Functional
Model

• DID

.N/A

STD: State Transition Diagram, DFD: Data Flow Diagram, CFD: Control Flow Diagram

•Process is s transform in this context.

Figure 2. Dynamic Models and Diagrams

Dynamic behavior is the basis of information upon which threads of control are built;

however, dynamic behavior models only fragments of the system. State information is

associated with a particular class/object. Control and data flows are usually represented

between a particular group of classes/objects. Timing diagrams depict time durations of

6

SEW Proceedings 302 SEL-93-003



operations associated with segments of the system. Threads of control track the

information provided in the dynamic behavior models along a particular path which is

representative of a system scenario. In that threads of control integrate the puzzle pieces

which make up the system, their representation is fundamental to understanding how a

system operates as a whole.

THREADS OF CONTROL

A thread of control is a path which traces a sequence of operations among or within

objects or classes. This path represents a scenario which may be used during analysis,

design, or testing to trace through the model. Threads of control are valuable for

analyzing the model for completeness to ensure that all aspects of the system being

modeled are represented. Additionally, for real-time systems, they are essential in

identifying real-time processing requirements for timing constraints and bottlenecks.

Threads of control represent the integration, along a particular path, of the state, control

flow, data flow, and timing data contained in the dynamic behavior models. State

information is needed because the thread of control may vary depending on the state of the

class/object. Timing, data flow and control flow data provide the sequencing information,

data required along a particular sequence, and associated duration.

Coad and Yourdon presented thread of control information in a cursory fashion via

message connections on their Class-&-Object diagram; although descriptive information
about the threads of control as related to a particular class/object may be contained within

that class/objects specification_ In all of the methodologies reviewed, only Shlaer and

Mellor had a clear representation of the relation between the states of a class/object and

the threads of control associated with the states using a thread of control chart; however,

the tie back to the associated class/object was not apparent and none of the data

associated with the flow was represented. The Timing Diagram was the only mechanism

available in Booch's methodology which reflected thread of control related information.

While it tied operations, sequencing, and times to objects, it was deficient in representing

data and state information. Firesmith provided three different diagrams containing various

thread of control information: an object-oriented control flow diagram for each major

thread of control, a thread-level interaction diagram to show the interactions of

classes/objects for a given scenario, and a timing diagram for each thread of control.

Rumbaugh used event trace diagrams to show the sequencing of events in a system;

however the information provided in this diagram depicted only the event sequencing and

the class/objects impacted by the event. Thread of control representations associated with

the methodologies reviewed are summarized in Figure 3.

The review of methodologies for thread of control information indicated that none of

the methodologies covered all of the information associated with threads of control.

Firesmith's method appeared to provide the best and most comprehensive thread of

control information of the methodologies reviewed, but the information is spread over

several diagrams and is therefore difficult to assimilate.
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Thm•d
of

Control

(TOO)

Coad and

Yourdon
Message
Connections on
Class-&-Object

Diagram.
TOC in Class-&-

Object Specifi-
cation in bullet
list format or in
Service Chart.

Shlaer and!

Mellqr
Thread of
Control Chert
shows events J
end states

occurring in
• thread end
associated

times.

Booch

Timing Dia-
gram • how•
objects end
operations
sequence
and dur-
ation.

Firesmith

TOC Object-
Oriented CFD,

Thread-level
Interaction

Diagrams,
TOC Timing
Diagram

Rumbaugh

Event traces -
• how• event

sequencing and
the associated

class/objects

State
Information no yes no no no

Control Flow
Information yes yes yes yes yes

Data Flow no no no yes yes
Information

Timing
Information yes yes yes yes no

Associated
Class/Object yes no yes yes yes

Figure 3. Thread of Control Representations

Because of the significant role that threads of control play in understanding the overall

operation of a system, an effective means of representing them in object-oriented analysis

and design is needed. Current methodologies tend to fragment this information showing

only segments of the system at a time, using multiple models for different views of these

segments. The approach to integrating threads of control in object-oriented analysis and

design described here begins by abstracting classes/objects at a higher level. The rationale

for this higher level of abstraction is two-fold: f'n'st, end-to-end processing is easier to

show, as well as understand, at a higher level of abstraction; second, thread of control

information is attached at the higher level of abstraction which lessens the amount and

complexity of the information to be handled. Abstracting classes/objects at a higher level

implies that classes/objects are aggregated into larger groups based on some criteria, such

as being logically related to each other. These logically related groups make up a logical

view of the system.

LOGICAL COMPOSITE CLASSES

A logical view represents the groupings of classes/objects which are logically related

into higher levels of composition. Partitioning into groups is usually based on engineering

judgment, and minimizing the associations, aggregations and generalizations between

groups. Traditionally, the rationale for grouping classes/objects is for partitioning large

projects, and to provide a means of understanding the overall system and its interfaces. A

logical view which overlays a class/object diagram might look something like what is

shown in Figure 4.
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Logical View

clalm/o_

logical /
/

grou p_ng
relal_n*ilip

Figure 4. Groupings for a Logical View

Although no formal method for grouping classes/objects was presented in the

methodologies reviewed, each methodology touched on the concept in some fashion. Yet,

the terminology and approaches associated with the groupings of classes/objects varies

among the different methodologies. Coad and Yourdon use the term Subject. Subjects

are initially created by identifying the uppermost class, the parent, in each is-a or has-a

structure and calling it a subject. Subjects are further refined by minimizing the

relationships and message connections between the subjects. Shlaer and Mellor use a top-

down approach to grouping. They begin by identifying the different domains which make

up a system and partition large domains into subsystems. It is for each of these

subsystems that the class/object diagrams are constructed. Booch'combines

classes/objects into modules which are actually physical representations in that they are

intended to represent software modules. Modules may be further logically grouped into

subsystems. Firesmith groups classes/objects into subassemblies which ultimately make up

an assembly. He describes several approaches to identifying subassemblies depending on

the situation involved. Some of the approaches involve bottom-up development where

class/objects are identified and then grouped based on the criteria dictated by the

approach, such as coupling and cohesion criteria. Other approaches, such as recursion,

begin with top-down development by identifying parent subassemblies, and recursively

defining other subassemblies as needed. Rumbaugh introduces modules which are logical

groupings of the class/objects and associated relations defined in his object model.

Modules are the lowest level subsystems. The terminology, models and representations

associated with each of the methodologies for a logical view are shown in Figure 5.

9
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C0ad and Shlaer and Booch Firesmith Rumbaugh

Yourdon Mellor

Terminology Subjects • Domain • Subsystem • Assembly • Subsystem
• Subsystem • Module • Subassembly • Module

Model Subject Layer N/A

Represent-
stion

Cless-&-

Objects
Diagram

• Domain Chad

• Subsystem
Re!_!|onship
Model

• Subsystem
Communi-
cation Model

• Subsystem
Access
Model

Module
Architecture

• Subsystem
Diagram

• Module
Diagram

Assembly
Model

• Context

Diagram
• Assembly

Diagram

Object Disgre_r
(modules only)

** No distinction between model and representation

Figure 5. Logical View Representations

While these methodologies all describe logical groupings, they do not use this

construct in conjunction with thread of control information to represent end-to-end

processing. It is in this context that the logical composite class construct is introduced.

A logical composite class is a grouping of classes/objects which are logically related and
further refined/extended by integrating thread of control information. The rationale for

logical composite classes is that they provide a mechanism for representing end-w-end

threads of control through class/object groupings combining both static architecture and

dynamic behavior. They are also a precursor to process composite classes which further

refine groupings using process partitioning criteria. Process composite classes are detailed
in a later section. These constructs should be viewed as design-level classes which can be

integrated into a design language. Instances of this class are the actual groupings and their

associated data.

The methodology used to generate logical composite classes is a bottom-up approach

which begins with the initial groupings formed from the logical view. Next, the pertinent

state, data and control flow information required for threads of control is aggregated for

each logical grouping. As previously described in the dynamic behavior models, this

information is already available in fragmented form at the class/object level. To aggregate

the information means to recompose the information at the class/object level to the level of

abstraction of the logical groupings in a summarized form. This aggregated information is

assessed at the boundaries of the logical groupings by focusing on the information

required between the boundary classes/objects. The boundary class/objects are those

class/objects in the logical view that play an interface role between the groups defined in

the logical view. The aggregated information is attached to the associated logical

grouping. Groupings are then refined to minimize connections among groups. Figure 6

I

10
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shows the logical composite classes which evolved from the logical view groupings of

Figure 4.

Logical Composite Classes

1

message
operation
within
class/object

Figure 6.

[7 boundary class/object
example thread of control

Logical Composite Class Representation

The philosophy of using composite classes as aggregations of class/objects is probably

most closely associated with how Coad and Yourdon identify and ref'me subjects, since

subjects evolve partially out of has-a relationships. Refining the groupings as development
continues is consistent with Firesmith's recursive approach to development. However, the

logical composite class extends these concepts further by introducing a design-level

construct which contains a grouping of classes/objects at a higher level of abstraction and

attaches aggregated data representing thread of control information to those constructs.

While all of the methodologies described logical groupings, none of them addressed

the refinement of these groupings for processes as is required in real-time and distributed

systems. In this paper, the concept of grouping is extended even further using the process

composite class construct as a mechanism for refining groupings along process lines.

PROCESS COMPOSITE CLASS

A process view represents the mapping of class/objects to processes. In this context,

processes axe entities implemented in software that may execute concurrently and compete

for resources. The introduction of multiple threads of control necessitates partitioning

11

SEW Proceedings 307 SEL-93-003



systems into processes. The logical composite classes shown earlier might contain

multiple threads of control as shown in Figure 7.

Logical Composite Classes

iM

_=== threads of control
mmmmm

Figure 7. Logical Composite Classes with Multiple Threads of Control

Of the methodologies reviewed, the only methodology that provided a model for

processes was the Process Architecture model presented in Booch. This model described

templates for processes and processors. These templates contained information

concerning the characteristics of the computer, processes associated with each processor,

priority for each process and the scheduling approach. However, the model lacked any
transition or correlation to Booch's previously described class structure, object structure

or module architecture models. Additionally, no criteria for how processes should be

allocated or identified was provided.

The need for process partitioning has long been recognized in the real-time

development community. The merging of this technology with object-orientation is still in

its infancy. The key criteria for process partitioning have to do with communication and

timing. In terms of communication, the ideal is to minimize communication between

processes by grouping classes/objects which interface extensively within a process, thereby

reducing the interaction between groups. The interface between groups is referred to as

coupling, and within a group, cohesion. An excellent discussion on the coupling and

cohesion of objects and modules is presented in [Berard].

12
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Timing criteria affect process partitioning in a number of ways. For example, those

classes/objects whose operations support services which must be performed within a

specified time should be grouped in an independent process. Classes/objects whose

operations support services which perform on different cycles, sporadically, or at a low

level of priority should be separated into different processes. As previously mentioned,

threads of control may be used to trace through critical paths in a system to determine

total execution criteria. While a determination may be made to add processes due to

timing constraints, the tradeoff between adding these processes versus the overhead to run

them must be weighed. Additionally, the more processes that are added, the more

complex the system becomes. A representative listing of partitioning criteria for processes

is provided in [Neilsen].

The construct introduced in this paper to represent the partitioning of systems into

processes, is the process composite class. A process composite class is a grouping of

classes/objects originating from the logical composite class groupings and further refined

based on process partitioning criteria. The logical composite classes already represent an

initial partitioning based on the existence of interactions between groups. The

methodology for developing process composite classes begins by extending these logical

composite classes with timing information. The timing information associated with each

logical composite class is assessed. Class/objects or class/object groupings which have

distinguishing timing criteria such as being time critical or the other extreme, low priority,

are extracted from within the logical composite classes. Weights may then be assigned to

interfaces between modified groupings as a function of the number of data/control flows

among the groupings. These weights determine the need for further repartitioning based

on changed interactions between groups resulting from the previous repartitioning based

on timing. Weights reflect the magnitude of communications between the groups.

Repartitioning is performed as needed to achieve total execution time criteria. Figure 8

highlights how these sequences of repartitionings might look. Beginning with the

grouping of the logical composite classes from Figure 7, Figure 8 shows subsequent

groupings into process composite classes based on various process partitioning criteria.

Keeping track of these numerous classes/objects, the interrelationships among them, the

threads of control through them, and the partitioning criteria needed to determine the

potential groupings into composite structures, quickly becomes a complex problem which
is well suited for a database environment.

The formulation of groupings into process composite classes involves taking the

thread of control information attached to the logical composite class, and applying

process partitioning criteria with system constraints to result in process composite classes.

Classes and their associated attributes, operations and state data are contained in a

database. The relationships that tie operations to particular slate values or changes in

attribute values are also maintained. In the context of a logical composite class, thread of

control information is extracted from the appropriate classes. That is, the class/objects

whose operations are invoked along that thread of control, and the attributes and data

impacted or used in conjunction with those operations, are linked to the thread of control.
Additional information associated with the particular thread of control such as operation

13
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precedence, identification of time critical operations (priorities and deadlines), priority and

timing constraints, and communication interface requirements is also included.

Process Composite Classes

• J_ IL

threads of control
m

Figure 8. Repartifionings of Process Composite Classes

After threads of control are enumerated, interrelationships may be identified and

assessed. For example, different threads of control may use different operations within a

class. Interrelationships may be involved if one thread of control alters attribute values by

invoking a particular operation in a class where these attribute values are also used by

another operation invoked by a separate thread of control. The intra-dependencies of

attributes affected by operations within a given class is maintained in the database. These

intra-dependencies must be considered among the various threads of control. The

interdependencies along various threads of control between logical composite class

groupings must also be considered. These dependencies and their magnitude provide
much of the data needed to make process partitioning decisions.

The process composite class definition can be augmented by algorithms which

provide optimal solutions to allocations, Given the proper criteria, these algorithms can

provide solutions using various methods such as graph-theoretic allocation or a heuristic
branch and bound allocation that minimizes or maximizes performance objectives
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[Horowitz], [Reeves]. Typical constraints minimize the cost of running the total system

by partitioning the process composite classes efficiently. The partitioning resulting from

the process partitioning criteria, combined with system constraints such as communication

bandwidth, processor speed or concurrency limitations, provide the information needed to

define the performance objectives. Figure 9 depicts the overall formulation of groupings

into process composite classes.

Thread of Control Information
Attached to Logical Composite Class

Thread of Control x

priority 1
cycle time
duration
event a
class/object 1: operation 1.3
state value = q
class/object 4: operation 4.1

Classes
• attributes
• operations

• state data
- transitions
- events
- state values

Figure 9. Formulating Process Composite Classes

The results of this work are being used to develop a streamlined methodology for use

with distributed, real-time applications. Basic class/object static architectures and dynamic

behaviors will be drawn from the strengths of the methodologies reviewed and

consolidated. The logical and process composite class structures will provide a layer

above these other constructs and will be integrated in a design language. Integrating this

concept into a design language provides a means of representing the structure graphically,

building a database, and generating consistency checks. Additionally, it provides a basis

for an automated mechanism so that regrouping for logical and composite class structures,

and the application of algorithms to these structures, may be easily accomplished for

efficiency comparison purposes.
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FUTURE WORK

Several issues have arisen as a result of this _h which require further

investigation. These issues focus on specific cases where object-oriented and distributed

system pardtionings are in conflict. One case concerns the fact that distributed systems

sometimes require that parts of the same object be in multiple locations. For example,

different operations may be required on the same object depending on where it is located

in the system. This requirement is contrary to all of the attributes and operations

associated with an object being encapsulated within the object. Another case is one in

which the various operations contained in an object may have different timing constraints.

For example, one operation may be along a time critical thread of control while another

may not. The t-trst inclination would be to group the object into a process in accordance

with the highest priority operation. The down side of this, however, is that all of the other

information related with that object, such as the secondary operations, and threads of

control and objects associated with those secondary operations, are then grouped into the

same time critical process. These cases and others like them require further exploration in

order to integrate solutions into the process partitioning approach.

SUMMARY

The results of this research indicate that current object-oriented analysis and design

methodologies' representations do not provide a clear understanding of the end-to-end

processing which defines system operation. This research has introduced logical and

process composite classes that act as structures for representing groupings of

class/objects. These structures reflect classes/objects and the threads of control through

those classes/objects. Further study is needed to extend these structures into a design

language, and refine the partitioning conflicts which arise between objects and processes.
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Problems
• Current object-oriented analysis and design

methodologies fall short in their
representation of end-to-end processing

- system is represented with multiple views

- only pieces of the system are represented

- people have difficulty in seeing how system operates

• Goals associated with object-oriented and
distributed systems are conflicting

- large-scale reel-time distributed systems reconcile
competing demands for resources by partitioning the
system into multiple processes

- object-oriented technology strives to partition a system
by objects where all data and operations associated with
an object are encapsulated within the object

- the partitionings for processes and objects appear to be
orthogonal in this context when threads of control are
considered

m _ Ow_qx_mt m_lu
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Solution/Approach Overview
• Represent threads of control and their

associated class/objects to better illustrate
how the system operates

- Five current object-oriented analysis and design
methodologies assessed: Coad and Yourdon, Shlaer and
Mellor, Booch, Rresmith, and Rumbaugh

- introduce a representation which overlays dynamic flow
(threads of control) onto a static structure

• Group class/objects at higher level of
abstraction for process partitioning

- Combining dynamic and static representation to show
end-to-end processes requires some grouping of
classes/objects at higher levels

- To simplify partitioning problem, grouping is two-phased:
(1) logical groupings, further refined with thread of
control Information (provides a coarse-grained
partitioning) (2) process groupings, extend logical
groupings with process partitioning criteria

Background
• Static Architecture

- non-temporal representation of the system

- typically depicted as an enhanced entity-relationship
diagram

• Dynamic Behavior
- behavior attributable to timing and flow of information

- may include state, control flow, data flow and timing
information

• Thread of Control
- path which traces a sequence of operations among or

within objects or classes

- represents a scenario which may be used dudng
analysis, design, or testing to trace through the model for
completeness and real-time processing requirements

• Static and dynamic representations exist, but
thread of control representation is limited

amm _ _ Dlttslm
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Thread of Control Representations

Thread

of

Control

(TOC)

State

Information

Control Flow
Information

Data Flow

Information

Timing
Information

r

Associated

Ck,,_Obloct

Coad and
Yourdon

Idklmge
Connections on

Class-&-Object

Diagram.
TOC In Class-&-

Object Speclfl-
catkin in bullet

list format or in

Service Chart.

no

yes

no

yes

yes

Shlaer and
Mellor
Thread of
Control Cllart i

shows events
and states

occurring In
a thread and

associated

times.

yes

yes

no

yes

no

Booch

Timing Dia-

gram shows
objects and

operations

sequence
and dur-

ation.

no

yes

no

yes

yes

Firesmith

TOC Object-
Oriented CFD,

Thread-level

Interaction

Diagrams,

TOC Timing

Diagram

rio

yes

yes

yes

yes

Rumbaugh

Event traces -
shows event

!sequencing and
the associated

class/objects

no

yes

yes

no

yea

Logical View

• The Logical View represents groupings of
classes/objects which are logically related.
Partitioning into groups is based on.

- engineering judgement

- minimizing the associations, aggregations and
generalizations between groups

• Rationale for Logical Groupings
- Partitioning for large projects

- Means of understanding overall system and interfaces

• Terminology
- Subjects -Coad and Yourdon

- Domains/Subsystems - Shlaer and Mellor

- Subsystems/Modules - Booch. Rumbaugh
- Assemblies/Subassemblies - Firesmith
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Logical Composite Class
Representation

Logical View

1 3 21

grouping relationship

Logical Composite Classes

message
operation
within
class/object

[] boundary class/object
example thread of control
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Process View

• The Process View represents the mapping of
class/objects to processes (entities
implemented in software that may execute
concurrently and compete for resources).

• The introduction of multiple threads of
control is a major reason for partitioning the
systems into processes.

• The only methodology reviewed that provides
a model for processes is Booch's Process
Architecture.

- Describes templates for processes and processors
- Provides no transition from his other models (class

structure, object structure or module architecture) to the
process architecture

W_tb olmrstl_
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Process Composite Class
• A process composite class is a grouping of

classes/objects originating from the logical
composite class groupings and further
refined based on process partitioning criteria

• Process Partitioning Criteria
- Communication

,, minimize communication between processes

- Timing
,, class/objects whose operations support services

which must be performed within a specified time

class/objects whose operations support services
which perform on different cycles, sporadically, or at
a low level

adjust process groupings as needed to meet total
execution time criteria

•--R',_"_'-'-o,-_-_=_'-

Process Composite Class
Representation

Logical Composite Classes

1 2

m
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threads of control

Process Composite Classes
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Formulating Process Composite
Classes

Thread of Control Information

Attached to Logical Composite Class

Thread of Control x

1

time

duration

event a

class/object 1: operation 1.3

q

• operations

• state data

• transitions

I "events

L_" state values

Hmm,_Hm • _ _o,d O_ek_
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Ongoing Work
• Represent the logical and process composite

class structure in a design language

- provides a means of representing the structure
graphically, building a database, and generating
consistency checks

- basis for automated mechanism so that regrouping for
logical and composite class structures may be easily
accomplished for efficiency comparison purposes

• Address specific cases where object-oriented
and distributed system partitionings are in
conflict and integrate solutions into process
partitioning approach. Examples include:

- distributed systems sometimes require that parts of the
same object be in multiple locations

- one operation in an object may be along a time critical
thread of control while another may not; requires that
entire object and all associated threads and objects be
grouped into time-critical process

Huntsvmsolms_l_s
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Summary
• Current object-oriented analysis and design

methodologies representations do not
provide the viewer with a clear understanding
of the end-to-end processing which defines
system operation

• This research has introduced logical and
process composite classes that act as
structures for representing groupings of
class/objects. These structures reflect
classes/objects and the threads of control
through those classes/objects.

• Further study is needed to:
- extend these structures into a design language

- refine the parititioning conflicts which arise between
objects and processes

ttu_svlle Op,r.,k)e,
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